Electron energy-loss near-edge shape as a probe to investigate the stabilization of yttria-stabilized zirconia

S. Ostanin,1,2§ A. J. Craven,1 D. W. McComb,2 D. Vlachos,1,2‡ A. Alavi,3 A. T. Paxton,4 and M. W. Finnis4
1Department of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ, United Kingdom
2Department of Chemistry, University of Glasgow, Glasgow G12 8QQ, United Kingdom
3Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
4Atomistic Simulation Group, School of Mathematics and Physics, Queen’s University, Belfast BT7 1NN, United Kingdom

(Received 22 November 2001; revised manuscript received 26 February 2002; published 10 June 2002)

The electron energy-loss near-edge structure (ELNES) at the O K edge has been studied in yttria-stabilized zirconia (YSZ). The electronic structure of YSZ for compositions between 3 and 15 mol % Y2O3 has been computed using a pseudopotential-based technique to calculate the local relaxations near the O vacancies. The results showed phase transition from the tetragonal to cubic YSZ at 10 mol % of Y2O3, reproducing experimental observations. Using the relaxed defect geometry, calculation of the ELNES was carried out using the full-potential linear muffin-tin orbital method. The results show very good agreement with the experimental O K-edge signal, demonstrating the power of using ELNES to probe the stabilization mechanism in doped metal oxides.

DOI: 10.1103/PhysRevB.65.224109

PACS number(s): 77.84.Bw, 81.05.Je, 71.20.—b, 78.70.—g

I. INTRODUCTION

Investigation of concentration-temperature phase diagrams can significantly improve the understanding of the factors controlling material properties. Yttria-stabilized zirconia (YSZ), formed by the addition of Y2O3 to ZrO2, is one such material with numerous commercial applications.1 Pure ZrO2 exhibits three well-defined polymorphs: the low-temperature monoclinic (m) phase, the tetragonal (t) phase between 1170 and 2370 °C, and the high-temperature cubic (c) phase, which exists up to the melting point of 2680 °C. Y2O3 has a large solid solubility range in ZrO2 and hence can be used to stabilize the t phase of YSZ. (Y2O3)(ZrO2)1−x,x, over the composition range 0.02<x<0.49 and the c phase with 0.04<x<0.4.

Pure c-ZrO2 has the fluorite structure with each metal ion in regular eightfold-coordinated sites having all of the Zr-O bonds of equal length. In the t phase, the Zr4+ ions are located in distorted eightfold coordination environments while, in m-ZrO2, Zr4+ is found in sevenfold coordination. In YSZ, the trivalent dopant cations Y3+ substitute for some of the Zr4+ ions and, in order to maintain charge neutrality assuming formal ionic charges, one O vacancy (∇) must be created for each pair of dopant cations. The presence of ∇ reduces the average cation coordination number to a value between 7 and 8 depending on the dopant concentration. Thus, c- and t-YSZ contain relaxed defects such as the ∇’s and Y-substituted atoms. These defects make the local atomic enviroments of the stabilized crystals rather different from the corresponding stoichiometric phases. The ∇’s may have a considerable influence on the mechanism of disordering and therefore on the YSZ phase diagram.

To date, no full quantitative description of the stabilization mechanism of YSZ has been reported. Extended x-ray absorption fine structure (EXAFS) results, which allow the individual coordination polyhedra to be probed, are somewhat contradictory. Some investigations have suggested that a Y ion is nearest-neighbor (NN) to the vacancy2 while other investigations have suggested that Y occupies next-nearest neighbor (NNN) cation sites.3 These inconsistencies are partly due to experiments being performed on samples with different dopant concentrations, leading to different displacements of the regular fluorite lattice sites near to the O ∇. Recent x-ray and neutron diffraction experiments report that at low (x<0.15) concentrations of Y2O3 there are regions ~15–20 Å in size which contain (i) isolated O ∇ and (ii) ∇’s arranged in pairs on the NN anion sites in the [111] fluorite direction, with the cation site located between them occupied by a Zr4+ ion.4 The isolated ∇’s, whose number increases with x, cause the t distortions observed clearly at x<0.09. Goff and co-workers5 suggested that another type of defect cluster formed as the x increases: the ∇ pairs along [111] pack together as in the Zr3Y6O12 structural motif.5 However, modeling such ordered structures is outside the scope of this paper.

Electron energy-loss spectroscopy (EELS) has developed into a powerful technique for investigation of the electronic states of crystals, providing information about the unoccupied density of states (DOS) via the energy-loss near-edge structure (ELNES). The ELNES data are both the site and symmetry projected due to the localized nature of the core-level excitation process and, hence, can be compared directly with the results of density functional theory calculations. ELNES is closely related to the x-ray absorption near-edge structure (XANES) but has the advantage that the local composition can be determined in inhomogeneous materials. The ELNES spectra of YSZ have been measured,6 demonstrating the features of the experimental O K-edge shapes which depend on the crystal structures and the Y2O3 composition.7 The calculated and observed O K-edge shapes in pure m-ZrO2 agree well. However, there is gradually worsening agreement from the t to the c phase between the calculated shapes of the pure t- and c-ZrO2 structures and the experimental O K-edge ELNES from 3 and 10 mol % Y2O3-ZrO2,
respectively. This is attributed to the absence of defects in pure materials. Using a Zr$_2$Y$_2$O$_7$ cell, which crudely models 33 mol% Y$_2$O$_3$, a satisfactory qualitative result for the O K-edge shape was obtained, indicating that the presence of relaxed defects is essential in the ELNES calculations. These ELNES findings suggested that it would be worthwhile to carry out calculations using larger unit cells to model YSZ.

II. EXPERIMENT

The YSZ samples were initially characterized using powder x-ray diffraction (XRD) to check phase purity and by analytical transmission electron microscopy to measure the grain size, Y/Zr composition ratio, and homogeneity. The Y/Zr ratio was determined by energy dispersive x-ray (EDX) spectroscopy. The ELNES investigations were carried out using a 100-kV VG HB5 dedicated scanning transmission electron microscope (STEM) with post-specimen lenses and equipped with a GATAN 666 parallel electron energy-loss spectrometry (PEELS) system. A convergence semiangle of 11 mrad was used, giving a probe diameter of ~1 nm and a probe current of ~0.2 nA. The collection semiangle used was 12.5 mrad. A background of the form AE^{-r} was removed from the O K-edge spectra, the low loss spectrum was used to deconvolute the plural scattering, and the spectra were then sharpened by deconvoluting the detector point spread function. The PEELS spectra from a number of grains were checked for consistency and then summed. This consistency check ensures that the data used have not been influenced by electron beam damage of the specimen. The summation over a number of different grains means that the data are averaged over a range of orientations. At each point from which PEELS data were recorded, EDX data were also recorded to give the local Y/Zr ratio.

III. MODEL

The approach presented consists firstly of a relaxation of the (96−y)-atom YSZ supercell in the presence of y vacancies followed by the calculation of the ELNES using the relaxed atom positions. This (96−y)-atom supercell has a lattice parameter of 2a, where a is the lattice parameter of the conventional 12-atom fluorite cell. To relax the cells, we have used the plane-wave, pseudopotential-based free energy molecular dynamics (FEMD) technique. As we have demonstrated, the FEMD and near full-potential linear muffin-tin orbital (NFP-LMTO) methods are in almost perfect agreement, reproducing the relative energetics of the three ZrO$_2$ phases at 0 K. The structure generated by FEMD is in equilibrium with respect to the LMTO forces. The total and site- and Mulliken-projected DOS of YSZ after relaxation are derived from the energy bands within NFP-LMTO method. With this large cell, it was not possible to calculate the matrix element for each site or include the effects of a core hole because of the much increased computing time required. However, for this system, the Mulliken-projected DOS can be used to give a reasonable approximation of the ELNES. The excited atoms contributing to a particular ionization edge have a range of environments after relaxation. Hence, the ELNES shape from each site must be aligned to take account of the binding energy appropriate to that site and then summed. In order to allow a direct comparison of the calculated ELNES shape with experiment, a broadening mechanism has been applied to take into account the initial- and final-state lifetime broadening. The Lorentzian linewidth for the final states has the E^2 form. The initial-state lifetime broadening is a Lorentzian with the linewidth taken from atomic data. Finally the theoretical ELNES spectra are convoluted with a Gaussian whose full width at half maximum matches the instrumental resolution.

IV. RESULTS AND DISCUSSION

A. Isolated vacancy

An isolated vacancy in YSZ has been studied using the 95-atom cubic supercell. The initial fractional coordinates of the metal atoms are those in the fluorite cell and two Y atoms are substituted for two Zr atoms. The initial fractional positions of the O atoms are either those in the fluorite structure or those corresponding to the tetragonal distortion of the O atoms in the t structure. A single atom from the O sublattice is removed. This corresponds to 3.2 mol% Y$_2$O$_3$-ZrO$_2$. Fixing the unit cell volume at that of the theoretical equilibrium volume of c-ZrO$_2$—namely, 131 Å3—we make the static FEMD optimization, allowing the internal coordinates of all atoms to be relaxed. The 3 mol% Y$_2$O$_3$-ZrO$_2$ specimens characterized using powder XRD indicate the t-type distortions of the O columns and, in addition, a c/a ratio of ~1.03 for the metal sublattice. The tetragonal distortion of the metal sublattice has little effect on the relaxation process, as has been shown for pure ZrO$_2$, while requiring a significant increase in computation time. Thus we start with the t-distorted O sublattice, as in t-ZrO$_2$, but assume $c/a = 1$ for metal sublattice. The total energy after relaxation is compared to that starting from the c geometry of O with the same Zr/Y configurations.

Figure 1 shows the arrangement of atoms around the vacant O site before structural relaxation. Figure 1, in the upper diagram, shows a fluorite unit cell of side of length a with an oxygen anion at the origin. It has been divided into eight octants. The four sevenfold-coordinated NN cations to the occupy the centers of alternate octants to create a tetrahedral arrangement around the vacant anion site. The NN anions to the are located at the face centers of the fluorite unit cell while the second nearest anions (NNN) are positioned at the middle of each edge of the unit cell and the third nearest (NNNN) anions are at the corners of the unit cell. In order to illustrate the cation geometry it is useful to redraw figure as shown in the lower diagram of Fig. 1. In this diagram, the octants have metal cations rather than oxygen anions at the corners and the O vacancy is at the body center of the central cube. The six NN anions to the are located at the body centers of the other octants in an octahedral arrangement. The four NN cations occupy half of the corners of the central cube, forming a tetrahedral arrangement around the vacancy. The 12 NNN cations occupy half of the 24 outer corners of the octants.
with 3 mol % Y₂O₃ and so cannot say whether the

This is similar to the arrangement in the

m

h

tion of Zr atoms in the NN sites to the

than Y. Placing Y in the NNN positions allows the coordina-

tions, the NN metal sites are occupied by Zr rather

et al. support the evidence of Goff

is the stable form or only a metastable form.

Experimentally, 3 mol % Y₂O₃-ZrO₂ can exist indefinitely in

~

15 K/cation, which

denotes the nearest-neighbor cation shell to the □ and so on, (NN,NNN) denotes the

and Zr⁴⁺. However, it can be seen that the electrostatic-driven model works only when relaxation is for-
bidden.

Figure 1 shows there are 12 NNN cation sites on which

the 10 Zr and 2 Y can be distributed. In Fig. 2, panels (d) and

(e) show the effect on the total energy as the relaxed separa-
tion of the Y atoms in the NNN shell is varied from \(a/\sqrt{2}\) to

\(a\sqrt{5/2}\). The energy differences between the different Za/Y

NNN configurations are only \(\sim 1\) meV/cation so that all are

likely to coexist in a material at room temperature. The en-

ergy is expressed per cation in the cell because the number of

anions per cell varies with Y₂O₃ composition. The range of

energies involved can be used as an estimate of the uncer-
tainty in the difference between the \(t\rightarrow c\) configurations. The
difference between the minimum energies of the 95-atom

supercell with the \(c\) configuration and that with the \(t\) configu-
ration, \(\Delta E_{t\rightarrow c}\), is 0.846 eV. Expressing the latter as an

equivalent temperature, this gives 317\(\pm 15\) K/cation, which
gives an indication of the relative stability of the YSZ \(t\)

phase. For the pure ZrO₂ phases, the corresponding calcula-
tions give a difference of 534 K/cation, i.e., almost twice as

much. It must be noted that the most careful first-principles

calculations of the phase transition temperature, obtained in

such a way, are not always satisfactory. To get a better quan-
titative agreement with experiment, the temperature depend-
ence of the vibrational lattice energy must be included in

the free energy calculation of each phase.¹⁶

eightfold coordinated. If the vacancies associate with host Zr ions, it may support a coordination-driven ordering model of stabilization in YSZ, which argues that increasing covalency can lower the coordination of Zr. This result is in conflict with a simple electrostatic model in which the repulsion be-
tween an anion vacancy and Y³⁺ should be less than be-
tween the □ and Zr⁴⁺. However, it can be seen that the elec-

stabilization in YSZ, which argues that increasing covalency

FIG. 1. Unrelaxed arrangement of atoms in pure c-ZrO₂ in the

vicinity of the vacant O site. In the upper diagram, the vacancy is at

the center of the unit cell. The oxygen anions around the vacancy

occupy the corners of the eight octants. In the lower diagram only

the Zr cations are shown. The octants are the same size as in the

upper diagram but the vacancy is at the center (rather than a corner)
of an octant. The NN cations (gray) form a tetrahedral arrangement

around the □ while the NNN cations (black) occupy 12 of the 24

corners of the outer octants.

With the O atoms in the c geometry, Stapper and co-workers¹⁵ have reported that the NNN rather than the NN sites are favored for Y. Figure 2 shows the total energies of a range of relaxed and unrelaxed structures as a function of the nearest-neighbor shells in which the two Y atoms are placed. As will be seen below, the positions of Y atoms within a given shell have considerably less influence on the total energy. Panel (a) of Fig. 2 shows the unrelaxed structure with the O atoms in the c geometry. The configuration with the Y atoms adjacent to the □ [(NN,NN)] has the lowest energy. Panel (b) shows that relaxation reduces the total energy of all configurations by over 2 eV per 95-atom cell. It also shows that the configuration with both Y atoms in the NNN shell now has the lowest energy, as reported by Stapper and co-workers.¹⁵

Panel (c) shows the effect of starting relaxation with the O atoms in the t geometry. The total energies are reduced rela-
tive to the relaxed c configurations by \(\sim 1\) eV/cell and the

(NNN,NNN) Y pair remains the lowest-energy configuration. Experimentally, 3 mol % Y₂O₃-ZrO₂ can exist indefinitely in the \(t\) form. However, we have not calculated the \(m\) structure with 3 mol % Y₂O₃ and so cannot say whether the \(t\) structure is the stable form or only a metastable form.

These findings can be considered as a strong argument to support the evidence of Goff et al.⁴ that, at low Y₂O₃ concentrations, the NN metal sites are occupied by Zr rather than Y. Placing Y in the NNN positions allows the coordination of Zr atoms in the NN sites to the □ to fall from 8 to 7. This is similar to the arrangement in the \(m\) phase. Y remains

FIG. 2. Unrelaxed and relaxed energies of the single-vacancy c- and \(t\)-YSZ structures are plotted vs positions of the two Y dopant cations in the three upper panels, (a), (b), and (c). NN is the nearest-
neighbor cation shell to the □ and so on, (NN,NNN) denotes the

NN and NNN Y pair. The lower panels (d) and (e) present relaxation with Y NNN as a function of the Y-Y distance that illustrate a strong competition between all configurations.
Each Y atom brings its own local distortion field, which is screened by the NN anions. These relax outwards from the substituted Y atoms by an average distance of 0.1 Å along directions which are close to $\langle 111 \rangle$. This accommodates the longer Y-O bond, which is 2.3 Å in Y$_2$O$_3$ compared to the 1.8 Å of the Zr-O bond in the fluorite structure of pure ZrO$_2$. This result is in agreement with the K-edge XAS findings of Li and co-workers3 who conclude that the perturbation near to the Y defect is small, indicating that dopant cations do not take an active part in the YSZ stabilization. An isolated h introduces larger local deformations than the Y defect and these decrease fairly slowly with distance from the h so that a very large number of atoms are affected. The four sevenfold-coordinated Zr atoms NN to the h move outward from the h by 0.18 Å along $\langle 111 \rangle$ directions in the c cell used, in good agreement with previous calculations.15

Figure 3 shows the initial t distortion of the O sublattice. The cubic framework, divided into eight octants, is the same as that in Fig. 1. The unique direction is defined as $[001]$, which is the vertical direction in the figure. Alternate columns of O are displaced up and down by $\delta_{t0} = 0.06a$. The Zr NN atoms are not shown in Fig. 3.

Figure 4 shows the effect of relaxation on the O atom positions. The six NN O atoms all move towards the h. The four NN O atoms, close to the equatorial (xy) plane through the origin, all move upward reducing their initial value of δ_z by similar amounts and so remain approximately in an (xy) plane. They also move toward the h in the xy plane. Note that the lateral shifts are not found in pure t-ZrO$_2$ where only the z displacements occur. The relaxed positions of these four NN O atoms are an average distance of 0.29 Å from the anion sites in fluorite ZrO$_2$. The two apical O NN atoms move in opposite directions along $[001]$. The upper one in Fig. 4 reduces its initial value of δ_z to close to zero, returning to a position close to that in the c structure. The lower apical NN O atom increases its value of δ_z, becoming the atom with the maximum displacement and also becoming much closer to two of the Zr NN’s to the h. The details of the O shifts depend on the positioning of the Y atoms since the Y-O bond length is greater than the Zr-O one. This increases the displacement of O atoms which are NN to Y atoms. Indeed, for the displacements shown in Fig. 4, one Y atom is adjacent to the lower apical NN O while the second Y is bonded to the equatorial O atom, labeled as $x1$ in Fig. 3.

Figure 5 shows how the distances from the h, defined simply as an empty anion site in ideal c-ZrO$_2$, change on relaxation in the c and t cases. In both cases, the NN O atoms end up closer to the h than the NN Zr atoms. The one

![Fig. 3. Ideal positions of O atoms in the t-ZrO$_2$ near the vacancy shown at the fluorite site. The O NN atoms to the h are labeled.](image1)

![Fig. 4. The effect of relaxation on the O atom positions around the vacancy in t-3.2 mol % YSZ. The vacancy h is at the center of the figure. The atom positions in the ideal tetragonal structure are shown as × while the positions in the relaxed structure are shown as ○. The solid lines show the x, y, and z components of the changes in positions. All displacements from the ideal cubic fluorite sites have been doubled for clarity. The two Y atoms in the structure are to the left of the bottom left octant and below the bottom right octant of the diagram.](image2)

![Fig. 5. Distances from the O vacancy for neighboring atoms in the c- and t-3.2 mol % YSZ before and after relaxation.](image3)
exception is in the t-configuration where the upper apical NN O atom is close to the position in the original fluorite structure. The displacements in the (xy) plane decrease with distance from the \square. Within the cell, the average displacement in the z direction, δ_z, is only 60% of that in pure t-ZrO_2. Thus, the result of the relaxation is that there are a large number of nonequivalent O sites. However, since the displacements decrease with distance from the \square, the environments in each subsequent shell of O atoms around the \square become more similar to that of the perfect structure.

The left panel of Fig. 6 shows the unoccupied p-projected DOS on the six NN O atoms to the \square and their sum. Here the zero of energy is the top of the valence band. The right-hand panel shows the sum of the O p-projected DOS for atoms in successive shells normalized per atom. The fourth and higher anion shells are incomplete because of the limited size of the 95-atom cell, and only those atoms within the cell are summed. It is clear that there are severe modifications to the p-projected DOS in the NN O shell but that these decrease rapidly on moving to atoms in more distant shells. The biggest change occurs in the lower apical NN, marked “z-down” in Fig. 3. This O is very close to two of the NN Zr atoms because of the effect of both the \square and the adjacent Y atom in the NNN cation shell. The upper apical O NN atom has a p-projected DOS resembling that in the ideal fluorite structure. Three of the O NN atoms in the (xy) plane, namely, x_2, y_1, and y_2, have similar p-projected DOS, while x_1, which has a Y atom adjacent to it, is significantly different. In the NN O shell, the four O atoms with adjacent Y atoms also have noticeably different p-projected DOS compared to the eight that only have Zr neighbors. However, these differences are less marked.

Experimentally, EELS finds that the fundamental band gap is 4.2 eV in t-YSZ.17 After relaxation, the mono-\square model of t-YSZ indicates a gap of 3.7 eV without any mid-gap states, in good agreement with the experiment. As shown in Fig. 6, the weighted sum of the O p-projected DOS reveals two pronounced peaks above the top of the valence band, E_{v}, at 4.5 eV and 8 eV, separated by the pseudogap, which can be associated with the e_g-t_{2g} DOS splitting expected in a simple ligand field model of the bonding in ideal c-ZrO_2.

In metal oxides where the pure phase is stable, e.g., SnO_2, CaO, and MgO, thermochemical reduction results in color centers, which can be detected in the optical absorption spectrum18 and by electron paramagnetic resonance (EPR) measurements.19 Color centers can also be detected in UV- or x-ray-irradiated zirconia-based samples, in such materials reduced in a low-pressure O atmosphere and in calcia-stabilized zirconia.20 The presence of the \square’s in YSZ might suggest the formation of color centers in this material. DFT calculations neglecting relaxation have been used to predict the presence of color centers,21 as would our calculations using unrelaxed structures. However, experimentally, 12 and 24 mol % YSZ show no photoactive signal by EPR (Ref. 20) and Y_2O_3 is never used as a coloring agent in YSZ. Thus the color centers are not present in the real material. This is in agreement with our results for the relaxed structures, where the states in the gap present in the unrelaxed cell are no longer present.

B. Divacancy

A 94-atom cell models 6.7 mol % Y_2O_3-ZrO_2. Placing the four Y not closer than NNN shells to each \square and maintaining the maximum number of Y atoms on the NNN shell at 2, several configurations have been relaxed. We investigated vacancies aligned along four directions and the results in the top panel of Fig. 7 show that those along $\langle 111 \rangle$ have the lowest energy. The middle panel shows that there are three possible configurations along $\langle 111 \rangle$ in the 94-atom cell. Electrostatic considerations suggest that \square’s should repel.
From this point of view, configuration II in the middle panel of Fig. 7 should be energetically favorable as it has the largest separation between □’s and results in sevenfold-coordinated Zr ions. However, the bottom panel in Fig. 7 shows that all three configurations have similar energies in the c case while, in the t case, configuration I has the lowest energy by ~0.2 eV/cell (80 K/cation). The ⟨112⟩ results are shown to demonstrate that it is a higher-energy configuration in the t case as well as in the c case. In the lowest-energy configuration, the two □’s are along the fluorite [111] direction and are separated by a sixfold-coordinated Zr. The □-cation repulsions acting on the sixfold-coordinated Zr almost compensate each other, resulting in this host ion remaining practically at the original fluorite site. In addition, there are six sevenfold-coordinated NN Zr atoms which relax outwards from the nearest □ in a manner similar to the monovacancy case. This result supports the interpretation of the neutron data by Goff et al.4

The relaxed cluster of O atoms about the sixfold-coordinated Zr forms a distorted octahedron with Zr-O bond lengths in the range 2.04–2.21 Å. The left panel of Fig. 8 compares the bond lengths, normalized to the mean value for this octahedron, to those in various forms of TiO2 and the polyhedron around sevenfold-coordinated Zr in m-ZrO2. The right panel of Fig. 8 compares the metal-O-metal bond angles in these structures. It is clear that the bond length distributions in the O polyhedron around sixfold-coordinated Zr lie between those around Ti in anatase/rutile and brookite while the bond angle distribution is closest to that in brookite. ZrO2 exhibits no regular crystal structure with sixfold coordination and density functional theory (DFT) calculations22 predict the energy of ZrO2 in the rutile structure to be higher than in any of the observed ZrO2 phases. Because of the small size of Zr4+, the electrostatic arguments place ZrO2 on the border between the eightfold-coordinated fluorite and sixfold-coordinated rutile structures.22 The presence of the larger Y atoms appears to shift this balance in favor of sevenfold and sixfold coordination environments for Zr that are similar to the local environments observed in the m-ZrO2 and brookite structures, respectively.

The □ pair along ⟨111⟩ and the sixfold-coordinated NN Zr may play a key role in the stabilization of YSZ. Bogicevic et al.23 have also reported that the sixfold-coordinated Zr appears in the most energetically favorable relaxed compositions of long-range-ordered Zr3Y4O12. They note that this shows that the prevailing m-phase driving-force model for YSZ,24 which assumes that the c-phase stabilization arises from the sevenfold coordination tendency for Zr as in m-ZrO2, may be not absolutely correct. The brookite-type Zr-O motif sometimes can appear in the low-energy configurations of the multivacancy YSZ c cell at higher Y2O3 concentrations discussed below.

C. Multivacancy in YSZ

Unfortunately, the time-consuming lattice algebra technique25 cannot be utilized to relax all configurations in multi-□ YSZ. Several 3□ and 4□ complexes have been relaxed, allowing investigation of 10.4 and 14.3 mol % Y2O3-ZrO2, respectively. In each configuration, the Y atoms have been distributed so that they are not closer than NNN to any □. However, this means that the number of Y in the NNN shell can rise to 4. Forcing Y to remain on the NNN sites at 14.3 mol % Y2O3 concentration may not result in the lowest-energy configuration.

In the tri-□ cell, corresponding to 10.4 mol % YSZ, the □’s prefer to be distributed randomly although this means that □’s can end up close together along ⟨111⟩ or ⟨112⟩. However, the di-□ along ⟨111⟩ giving rise to a sixfold coordination Zr atom is not energetically favorable in this cell. Panel (a) in Fig. 9 shows that the mean tetragonal distortion ⟨δ⟩ in the lowest-energy t configuration decreases steadily as the number of □’s increases. Panel (b) in Fig. 9 shows the

![FIG. 8. Bond M-O lengths and M-O-M angles (M = Zr,Ti) in the sixfold-coordinated polyhedra of the relaxed 2□ YSZ cell compared to those observed in the various TiO2 structures as well as in m-ZrO2.](image)

![FIG. 9. Two upper panels (a) and (b) illustrate mean t distortion of the O sublattice and the difference in energy between the t and c configurations, respectively. The relaxed energies of the 3□ and 4□ c-YSZ vs mean shortest distance between vacant O sites are shown in the lower panel (c).](image)
difference in energy between the most stable \(c \) and \(t \) configurations. The energy is given in kelvin per cation to give an indication of the relative stabilities of the \(c \) and \(t \) phases in terms of thermal energy. In pure \(\text{ZrO}_2 \) as well as in the monovacancy and divacancy YSZ cells, the \(t \) configuration is more stable, while for three \(\square \)'s, the \(c \) configuration is marginally more stable. The changeover in stability is close to that observed experimentally.

The \(\square - \square \) separation before relaxation can be chosen as a useful parameter in many-vacancy YSZ to categorize its energetics. In the ideal fluorite structure, the position of each vacancy and the distance to any another \(\square \) are well defined. The shortest \(\square - \square \) distance for each empty fluorite site in the cell and, as the result, an average shortest distance between vacancies, \(\langle d_{\square-\square} \rangle \), can be calculated. For example, Fig. 9 shows that the highest-energy configuration calculated has a value of \(\langle d_{\square-\square} \rangle \) equal to 0.5\(a \). In this configuration, the \(\square \)'s occupy half (4/8) of the NN anion sites to the same \(\text{Zr} \), forming two \(\square - \square \) pairs along (100) in different \(z \) planes. Each vacancy has another one at a distance 0.5\(a \), giving an average of 0.5\(a \). After relaxation, the positions of the vacancies can be changed due to broken symmetry but we believe that the unrelaxed \(\langle d_{\square-\square} \rangle \) is rather a good parameter to illustrate energetics of defect YSZ. In Fig. 9, panel (c) shows the repulsion tendencies between the \(\square \)'s consistent with both electrostatics and the \(\text{Zr} \) coordination lowering model. Each total-energy curve in this panel is plotted with respect to its lowest-energy configuration. In the 3\(\square \) cell, the lowest energy value corresponds to the cell with all vacant O sites separated by \(\langle d_{\square-\square} \rangle = a \sqrt{3}/2 \) from each other in a way that creates only sevenfold-coordinated \(\text{Zr} \).

D. Soft lattice vibrations

It is known that the main contribution to the structural phase transition comes from particular vibrational modes. The effective phonon potential can be defined in terms of the difference in total energy between the perfect and distorted lattices for various amplitudes of the atomic displacements corresponding to the symmetry of the phonon considered.

In pure \(\text{ZrO}_2 \), a zone-boundary soft phonon \(X'_2 \) which breaks the \(c \) symmetry of the O sublattice, displacing the O atoms toward their positions in the \(t \) phase, might be responsible for the \(c \rightarrow t \) phase transformation. Our calculation of the \(X'_2 \)-phonon frequency within the harmonic approximation yields an imaginary frequency of 5.3 THz, which is very close to previous calculations. The imaginary frequency simply indicates that the \(c \)-\(\text{ZrO}_2 \) is unstable at low temperatures. If experimental data were available for this mode, then allowance for anharmonicity within a self-consistent phonon approximation would give a quantitative criterion to model the temperature dependence of the phonon frequency as well as the spectrum density. For doped \(\text{ZrO}_2 \), no microscopic mechanism for the phase transformation initiation has been proposed up to now. We believe that a theoretical investigation of a vibration mode in YSZ which corresponds to the \(X'_2 \)-phonon of pure \(c \)-\(\text{ZrO}_2 \) will be helpful in understanding the role of atomic vibrations in the phase transitions of YSZ.

![FIG. 10. Single-well and double-well potentials in c-YSZ. The top panel (a) shows the changes in total energy of the 1\(\square \) YSZ as a single very distant O to vacancy or NN lower O (marked \(z \)-down in Fig. 3) are moved from their relaxed positions, demonstrating the soft vibrations of the latter atom. In the panel (b), a decay of the double-well potential in c-YSZ with \(Y_2\text{O}_3 \) doping shown as \(U \) vs the \(d \) displacements of O for each concentration of \(Y_2\text{O}_3 \).](image-url)
placed in the mono-□ c cell to illustrate the effect of (i) the lower apical NN O to the □ along [001] and (ii) an O outside the fifth anion shell to □. This may indicate a marked softening of the vibration mode for the O NN atoms with respect to the distant ones. Hence, there is a possible mechanism of softening in the c phase of YSZ which can give a small excess heat capacity. Certainly, the NN O atoms have higher amplitudes of vibrations and this may have an effect on the ELNES shape.

E. ELNES

The calculated ELNES is shown in Fig. 11 and compared to the experimental O K-edge data for m-ZrO$_2$ and for YSZ with Y$_2$O$_3$ content in the range 3–10 mol %. The energy of the first peak p_1 has been defined as zero, and the experimental and calculated shapes have been aligned and intensity matched at this energy. In the calculations, the weighted sum of O K-edge ELNES for all types of O sites has been made, taking into account the theoretical core-level shifts. Taking m-ZrO$_2$ first, there is good agreement between the calculated and experimental O K-edge shapes with peak positions up to 10 eV. Beyond that, the calculation becomes less reliable. Using the model of YSZ with relaxed defects, the agreement between experiment and theory for the depth and shape of the minimum between the first two low-energy peaks p_1 and p_2 has been improved significantly compared to that using pure ZrO$_2$ structures.\footnote{J. P. Goff, W. Hayes, S. Hull, M. T. Hitchings, and K. N. Clausen, Phys. Rev. B 59, 14 202 (1999).}

We have reported elsewhere\footnote{H. G. Scott, Acta Crystallogr., Sect. B: Struct. Crystallogr. Crystal Chem. 33, 281 (1977).} that the energy separation between peaks p_1 and p_2 in the experimental O K-edge ELNES is essentially linearly dependent on dopant concentration. This behavior appears to be independent of the crystalline phase of the material and is reflected in the calculations. The energy separation between the p_1 and p_2 may prove to be a useful parameter for the characterization of zirconia ceramics on a nanometer scale. As described in Sec. II, great care was taken to minimize the effects of electron beam damage on the results discussed in this paper. In the case of high-spatial-resolution analysis it is possible that the high current density will result in the creation of metal and oxygen vacancies through electron beam damage processes and care is required to ensure that the observed ELNES is not influenced by such processes.

V. CONCLUSIONS

In summary, we report that features of the experimental O K-edge ELNES shapes depend on the crystal structures and the Y$_2$O$_3$ composition and provide us with further information to improve our understanding of YSZ. Ab initio calculations were performed to obtain the O K-edge ELNES in the relaxed YSZ. Good agreement between calculated and measured ELNES data was obtained with respect to the number of maxima, the intensity ratios, and energy positions of the peaks. In studying YSZ we have demonstrated that the relaxation of defects plays an important role. Our calculations relate the detailed changes in the relaxed structure to the experimentally observed ELNES shapes and their variation with Y$_2$O$_3$ content. Some residual differences between experiment and the calculated ELNES are likely to result from the soft-mode vibrations because, in EELS, there will be no essential difference for the static atomic displacements from the dynamical case of thermal vibrations. The combination of ELNES with detailed theoretical modeling shows great potential for the characterization of doped metal oxides.

ACKNOWLEDGMENTS

This work has been supported by the EPSRC under Grants No. GR/L66963 and GR/L66908, the European Science Foundation STRUC PSIK Network, MEL Chemicals Ltd., and Johnson Matthey PLC.